H(t)=-16t^2+75t+80

Simple and best practice solution for H(t)=-16t^2+75t+80 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for H(t)=-16t^2+75t+80 equation:



(H)=-16H^2+75H+80
We move all terms to the left:
(H)-(-16H^2+75H+80)=0
We get rid of parentheses
16H^2-75H+H-80=0
We add all the numbers together, and all the variables
16H^2-74H-80=0
a = 16; b = -74; c = -80;
Δ = b2-4ac
Δ = -742-4·16·(-80)
Δ = 10596
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$H_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$H_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{10596}=\sqrt{4*2649}=\sqrt{4}*\sqrt{2649}=2\sqrt{2649}$
$H_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-74)-2\sqrt{2649}}{2*16}=\frac{74-2\sqrt{2649}}{32} $
$H_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-74)+2\sqrt{2649}}{2*16}=\frac{74+2\sqrt{2649}}{32} $

See similar equations:

| 0.20a+1=0.30 | | -5(x+1)=2x+10 | | 5=4+b/4 | | 0.25a+1=3/10 | | 4+3x=-1+8x | | 2.10+8m=11.7 | | 90-30-10=3x | | 16-y/7=21 | | 15x-17=129 | | -3(x+5)=3(x-3) | | 3x-1=129 | | 6m-3÷7=9 | | -4=⅔b | | 20d+60=40d | | 22=60÷y+2 | | 15x-17+3x-1=129 | | 5v-2v=7-4v | | 0.3(x+1.2)-0.3x=0.5(x-4.2)-0.5x | | -x-5+4x=-7x7+6x+15 | | 100-10=m15 | | -4x-102=10x+96 | | -4r+6=4-5r | | 1/3t=6/5 | | 15x-17=3x-1 | | -116=7a-6(1-8a) | | 0,5x+0,13=x/5 | | 40=-1/3(9x× | | 5d-1=-4 | | 2x^2-8x-115=0 | | 100+10=m15 | | -7(x-6)=98 | | 39+x=-19 |

Equations solver categories